Pathogens, Antibodies, and Vaccines

Part 1: Modeling Pathogens and Antibodies

Three dangerous diseases:

- **Pertussis** (whooping cough) is caused by *Bordetella pertussis* bacteria
- **Diphtheria** is caused by *Corynebacterium diphtheria* bacteria
- **Tetanus** (lockjaw) is caused by *Clostridium tetani* bacteria

What happens when the body is invaded by the pathogens that cause these dangerous diseases?

1. Use the information in the “Immunizations and the DTP Vaccine” brochure in your kit to complete the following chart.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen (bacteria, viruses, or fungi)</th>
<th>Contagious (yes or no)</th>
<th>3 Symptoms of disease</th>
<th>2 Body systems affected</th>
<th>Probability of death if infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>___ in 10</td>
</tr>
<tr>
<td>Tetanus lockjaw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>___ in 10</td>
</tr>
<tr>
<td>Pertussis whooping cough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>___ in 10</td>
</tr>
</tbody>
</table>

Pathogens are disease causing microorganisms, such as bacteria, viruses, and fungi.
Bacteria cause pertussis, tetanus, and diphtheria

Pertussis, tetanus, and diphtheria are caused by pathogenic bacteria. You will use the materials in your kit to make models of these three bacteria.

2. The three foam balls represent bacteria. Use a pen or marker to label the balls—pertussis, tetanus, or diphtheria.

![Three Types of Bacteria](image)

3. The three types of bacteria have different proteins on their surfaces. The adhesive jewels represent surface proteins on the bacteria. Use the glue dots to firmly attach three of the same type of jewels to the surface of each of the bacteria. *Note: Save the extra star jewel (pertussis) for use later.*

![Three Types of Surface Proteins on Bacteria](image)

4. How are the bacteria that cause pertussis, tetanus, and diphtheria different?
Antigens

Humans do not make the proteins that are found on the surfaces of the bacteria that cause pertussis, tetanus, and diphtheria. So if these bacteria enter the human body, the bacterial proteins would be recognized as foreign proteins. Antigens are foreign proteins that your body does not normally contain.

When your body recognizes an antigen, it triggers an immune response that will destroy the bacteria that have this antigen. During the immune response, white blood cells of your immune system produce antibodies. Antibodies are proteins made by your body that bind (attach) to and destroy bacteria.

5. What is an antigen?

6. Which parts of your models represent antigens?

7. What type of cells makes the immune response?

8. What molecules are produced during an immune response to destroy bacteria?

9. Your body cells have surface proteins. Why don’t you make antibodies against these surface proteins?

Antibodies

During an immune response, white blood cells produce and release defensive proteins called **antibodies**. Each antibody molecule is a Y-shaped protein with two antigen binding sites on the ends. The antigen binding sites will bind to antigens on the surface of bacteria. The other end of the antibody is a “flag” that marks bacteria for destruction.

10. Use the four pieces of straw and small rubber bands to create a Y-shaped antibody molecule. Your model should look something like the diagram on the right.

11. Each antibody has two **antigen binding sites**. These specific antigen binding sites are **specific**. Specific means they have just the right shape to fit with one kind of antigen. You will make two antigen binding sites that can bind to the surface proteins (star jewels) on the bacteria that cause pertussis.

 - Divide the strip of clay in half. Shape each half of clay into a ball.

 - Make two pertussis antigen binding sites by pressing the star jewel (pertussis antigen) into the clay balls to make a pocket in the clay that will fit the pertussis antigen. Remove the star jewel to leave a pocket in the clay.

 - Then, attach each of the balls of clay to the end of the straw. The pertussis antigen binding sites are on the ends of the Y shaped antibody, as shown in the drawing above. Make sure the star shaped pocket is facing out on the end of the antibody.

 - Now you have a specific antibody that can bind to and destroy bacteria that cause pertussis.
12. Attach your model of an antibody to one of the antigens on the surface of the bacteria cell that causes pertussis.

13. How can you tell that the antibody you made is **specific** for the bacteria that cause pertussis?

14. How would an antibody for diphtheria be **different from** an antibody for pertussis?

15. How would an antibody for pertussis be **similar to** an antibody for diphtheria?

16. What happens to bacteria cells when antibodies attach to antigens on the surface of the bacteria?

17. Will the antibody model that you made be able to protect against the Bacteria X shown on the right? Explain why or why not.

18. Words that start with the same letters are easy to confuse. Use your creativity to develop a way to help other students remember the difference between an **antigen** and an **antibody**.

Part 2: Antibodies and Immunity

In this activity, you will do laboratory tests to compare the antibody levels of three children (1, 2, and 3) who have been exposed to the bacteria that cause pertussis.

Child 1: Unvaccinated First Exposure to Bacteria that Cause Pertussis

The first time you are exposed to a specific pathogen, such as the bacteria that cause pertussis, the pathogens multiply causing you to get sick (have symptoms). You get sick because it takes about 10 to 15 days for the white blood cells to recognize the pathogen and divide to form many white blood cells that produce antibodies with the correct shape for fighting the specific pathogen.

The immune response that you make to the first exposure to a pathogen is called the **primary immune response**. It does **not** keep you from feeling sick but it does help you get better!

Once pathogens are destroyed, the concentration plasma cells and antibodies in the blood decreases but white blood cells called **memory cells** are left behind to fight that pathogen in the future.

1. A laboratory technician tested the antibody levels in Child 1’s plasma on the day of exposure to pertussis bacteria and 10, 20, and 30 days after the exposure. The results of these tests are shown in the data table below.

| Relative Concentration of Pertussis Antibodies |
|------------------|-----------|-----------|-----------|
| Child | Day 0 | Day 10 | Day 20 | Day 30 |
| Child 1 | 0 | 0 | 1000 | 100 |

2. Make a graph for the data from Child 1. Use the graph grid provided on the last page of this lab packet. **Indicate the color that you used to draw the line and circles in the key.**

- You may tear this off to make it easier for you do the graph.
- Include a title and appropriate labels for the axes.
- Use circles and lines to plot the data for Child 1. **Indicate the color of the circle and lines you used in key.**
3. Explain why Child 1 gets sick and has the symptoms of pertussis. Support your explanation with information from the graph and the reading in the box.

4. What function do antibodies have for Child 1?

5. What does the primary immune response do the first time you are exposed to the bacteria that cause pertussis?

6. A doctor may prescribe an antibiotic if a person becomes sick with a disease. What is an antibiotic?

Antibodies are specific proteins that your body produces in response to the presence of bacterial or viral antigens. They identify and attack invading bacteria or viruses. Specific antibodies can provide long-term immunity to specific diseases.

Antibiotics are nonspecific chemicals that temporarily reduce the duration and intensity of bacterial infections. They act by damaging the bacteria cell walls or disrupting the bacteria’s metabolic processes. Antibiotics are not produced by the body and have no effect on viruses. Antibiotics may harm both pathogenic bacteria and beneficial (good) bacteria. Antibiotics also do not provide immunity to diseases.

7. List three ways in which antibodies are more effective than antibiotics in protecting against pathogens.

• __
• __
• __

8. Words that start with the same letters are sometimes easy to confuse. Use your creativity to develop a way to help other students remember the difference between an antibody and an antibiotic.

9. A laboratory technician tested the antibody levels in Child 2’s plasma on the day of exposure to pertussis bacteria and 10, 20, and 30 days after the exposure. The results of these tests are shown in the data table below.

Pertussis Antibodies in Child 2 Following Exposure to Bacteria that Cause Pertussis

<table>
<thead>
<tr>
<th>Child</th>
<th>Relative Concentration of Pertussis Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 2 Unvaccinated Second Exposure</td>
<td>Day 0</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

10. Add the data for Child 2 to your graph. *Use a different colored line and triangles to plot this line and indicate the color you used in the key.*

11. What does it mean to say that someone is immune to the bacteria that cause pertussis?

12. Explain why Child 2 is immune to pertussis. Support your explanation with information from the graph and the reading.

13. How is the secondary immune response different from the primary immune response?

14. What are “memory” cells?

15. What is a disadvantage to developing immunity by being exposed to the bacteria that cause a pertussis?

16. You will conduct the laboratory tests to determine the antibody levels in Child 3. Use the plasma sample from Child 3 and the Pertussis Antibody Test Instructions in your kit to complete the following data table.

Pertussis Antibodies in Child 3 Following Exposure to Bacteria that Cause Pertussis

<table>
<thead>
<tr>
<th>Child</th>
<th>Relative Concentration of Pertussis Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 3 Vaccinated Exposure to bacteria that cause pertussis</td>
<td>Day 0</td>
</tr>
</tbody>
</table>

17. Add the data for Child 3 on your graph. *Use a different colored line and squares to plot this line and indicate the color you used in the key.*

18. Use the information in the box above and the graph to explain why Child 3 is immune to pertussis.

19. What would be in a pertussis vaccine?

20. To reduce the number of vaccinations you need to receive, doctors typically use a vaccine called DTP that prevents diphtheria, tetanus, and pertussis. What would be in a DTP vaccine?

21. Will the DTP vaccine protect a person from other diseases such as measles, mumps, and chicken pox? Explain why or why not.

22. Which is the best way to prevent diseases like pertussis, tetanus, and diphtheria—getting an antibiotic or getting a DTP vaccination? Explain your answer.

Part 3: A Case of Pertussis (Whooping Cough)

Colin’s Story

Colin was an adorable and happy baby, but at three months of age he began coughing uncontrollably for long periods of time. Colin would cough so severely that his lips would turn blue and he would gasp for air.

Mary Wright, Colin’s mother, rushed Colin to the emergency room, where he was immediately admitted and diagnosed with pertussis. Colin spent almost a month in the hospital. He required a breathing tube and he was given large doses of antibiotics. Mary felt very lucky that Colin survived.

Unfortunately, baby Colin was not the only one infected with the pertussis bacteria. A five-year old child in his neighborhood died from pertussis. Several high school students, including Colin’s babysitter, also developed pertussis. There was even an outbreak of pertussis in a local nursing home where Colin’s grandfather lived.

The one DTP vaccination that Colin had received when he was two months old was not enough to protect him against pertussis. It takes four DTP vaccinations to provide complete protection.

Today, Mary Wright is back in school pursuing a degree in Public Health. She hopes to use her education to speak out about the dangers of contagious diseases and the importance of vaccinations, not just for babies, but also for all community members. She wants people to understand that infants who have not received all four of their DTP vaccinations are vulnerable to pertussis. They can be exposed to pertussis by people who are unvaccinated or who have not received the recommended teen and adult pertussis vaccine boosters.

Use the information in Colin’s Story to answer questions 1 and 2.

1. Who might have exposed Colin to the bacteria that cause pertussis?

2. What actions could Mary have taken to prevent Colin’s case of pertussis?

Use the information in the “Immunizations and the DTP Vaccine” brochure in your lab kit to answer questions 3–6.

3. What substances in the DTP vaccine are important to preventing diphtheria, tetanus, and pertussis?

4. Why might some parents be concerned about having their children receive the DTP vaccine?

5. List two facts that could be used to convince parents that their children should receive the recommended DTP vaccinations.

• __
• __

6. Make a list of at least three actions that community members could take to prevent outbreaks of pertussis or other contagious diseases.

• __
• __
• __
Your name

Title:

Key: Child 1 Child 2 Child 3